一、什么是射頻電路
射頻簡稱RF,射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小于1000次的交流電稱為低頻電流,大于1000次的稱為高頻電流,而射頻就是這樣一種高頻電流。
射頻電路指處理信號的電磁波長與電路或器件尺寸處于同一數量級的電路。此時由于器件尺寸和導線尺寸的關系,電路需要用分布參數的相關理論來處理,這類電路都可以認為是射頻電路,對其頻率沒有嚴格要求,如長距離傳輸的交流輸電線(50或60Hz)有時也要用RF的相關理論來處理。
典型射頻電路方框圖
這是一個無線通信收發機的系統模型,它包含了發射機電路、接收機電路以及通信天線。這個收發機可以應用于個人通信和無線局域網絡中。在這個系統中,數字處理部分主要是對數字信號進行處理,包括采樣、壓縮、編碼等;然后通過AD轉換器轉換器變成模擬形式進入模擬信號電路單元。
二、射頻電路原理
射頻電路原理分三個部分,首先是接收電路的結構和工作原理,然后發射電路的結構和工作原理,最后本振電路的結構和工作原理。
接收時,天線把基站發送來電磁波轉為微弱交流電流信號經濾波,高頻放大后,送入中頻內進行解調,得到接收基帶信息。送到邏輯音頻電路進一步處理。
電路結構:接收電路由天線、天線開關、濾波器、高放管、中頻集成塊等電路組成。早期手機有一級、二級混頻電路,其目的把接收頻率降低后再解調。
發射時,把邏輯電路處理過的發射基帶信息調制成的發射中頻,把發射中頻信號頻率上變為GSM的頻率信號。經功放放大后由天線轉為電磁波輻射出去。
電路結構:發射電路由中頻內部的發射調制器、發射鑒相器;發射壓控振蕩器、功率放大器、功率控制器、發射互感器等電路組成。
而本振電路產生四段不帶任何信息的本振頻率信號;送入中頻內部,接收時,對接收信號進行解調;發射時,對發射基帶信息進行調制和發射鑒相。
手機本振電路有四種電路結構:
A,由頻率合成集成塊、接收壓控振蕩器、基準時鐘、預設頻率參考數據組成。
B,把頻率合成集成塊集成在中頻內部,結合外接、接收壓控振蕩器組成。
C,把頻率合成集成塊、接收壓控振蕩器集成一體,稱本振集成塊或本振舐IC。
D,把頻率合成集成塊、接收壓控振蕩器集成在中頻內部。
值得注意的是:無論采用何種結構模式,只是產生的頻率不同;其工作原理,產生的頻率信號的走向和作用都一樣的。
三、射頻電路的原理及發展
射頻電路最主要的應用領域就是無線通信,圖1為一個典型的無線通信系統的框圖,下面以這個系統為例分析射頻電路在整個無線通信系統中的作用。
這是一個無線通信收發機(tranceiver)的系統模型,它包含了發射機電路、接收機電路以及通信天線。這個收發機可以應用于個人通信和無線局域網絡中。在這個系統中,數字處理部分主要是對數字信號進行處理,包括采樣、壓縮、編碼等;然后通過A/D轉換器轉換器變成模擬形式進入模擬信號電路單元。
模擬信號電路分為兩部分:發射部分和接收部分。發射部分的主要作用是:數- 模轉換輸出的低頻模擬信號與本地振蕩器提供的高頻載波經過混頻器上變頻成射頻調制信號,射頻信號經過天線輻射到空間中去。接收部分的主要作用是:空間輻射 信號經過天線耦合到接收電路中去,接收到的微弱信號經過低噪聲放大器被放大后與本地振蕩信號經過混頻器下變頻為包含中頻信號分量的信號。濾波器的作用就是 將有用的中頻信號濾出來后輸入模-數轉換器轉換成數字信號,然后進入數字處理部分處理。
圖1以TriQuint公司的TGA4506-SM為例,給出了這個放大器的電路板圖,注意到輸入信號是通過一個經過匹配濾波網絡輸入放大模塊。放大模塊一般采用晶體管的共射極結構,其輸入阻抗必須與位于低噪聲放大器前面的濾波器的輸出阻抗相匹配,從而保證最佳傳輸功率和最小反射系數,對于射頻電路設計來說,這種匹配是必須的。此外,低噪聲放大器的輸出阻抗必須與其后端的混頻器輸入阻抗相匹配,同樣能保證放大器輸出的信號能完全、無反射的輸入到混頻器中去。這些匹配網絡是由微帶線組成,在有些時候也可能由獨立的無源器件組成,但是它們在高頻情況下的電特性與在低頻的情況下完全不同。圖上還可以看出微帶線實際上是一定長度和寬度的敷銅帶,與微帶線連接的是片狀電阻、電容和電感。
圖1 TGA4506-SM電路版圖
圖2 用于個人通信終端的低噪聲放大器電路板圖
在電子學理論中,電流流過導體,導體周圍會形成磁場;交變電流通過導體,導體周圍會形成交變的電磁場,稱為電磁波。
在電磁波頻率低于100khz時,電磁波會被地表吸收,不能形成有效的傳輸,但電磁波頻率高于100khz時,電磁波可以在空氣中傳播,并經大氣層外緣的電離層反射,形成遠距離傳輸能力,我們把具有遠距離傳輸能力的高頻電磁波稱為射頻,英文縮寫:RF。
高頻電路基本上是由無源元件、有源器件和無源網絡組成的。高頻電路中使用的元器件與低頻電路中使用的元器件頻率特性是不同的。高頻電路中無源線性元件主要是電阻(器)、電容(器)和電感(器)。
在電子技術領域,射頻電路的特性不同于普通的低頻電路。主要原因是在高頻條件下,電路的特性與低頻條件下不同,因此需要利用射頻電路理論去理解射頻電路的 工作原理。在高頻條件下,雜散電容和雜散電感對電路的影響很大。雜散電感存在于導線連接以及組件本身存在的內部自感。雜散電容存在于電路的導體之間以及組件和地之間。在低頻電路中,這些雜散參數對電路的性能影響很小,隨著頻率的增加,雜散參數的影響越來越大。在早期的VHF頻段電視接收機中的高頻頭,以及通信接收機的前端電路中,雜散電容的影響都非常大以至于不再需要另外添加電容。
此外,在射頻條件下電路存在趨膚效應。與直流不同的是,在直流條件下電流在整個導體中流動,而在高頻條件下電流在導體表面流動。其結果是,高頻的交流電阻要大于直流電阻。
在高頻電路中的另一個問題是電磁輻射效應。隨著頻率的增加,當波長可與電路尺寸12比擬時,電路會變為一個輻射體。這時,在電路之間、電路和外部環境之間會產生各種耦合效應,因而引出許多干擾問題。這些問題在低頻條件下往往是無關緊要的。
隨著通信技術的發展,通信設備所用頻率日益提高,射頻(RF)和微波(MW)電路在通信系統中廣泛應用,高頻電路設計領域得到了工業界的特別關注,新型半導體器件更使得高速數字系統和高頻模擬系統不斷擴張。微波射頻識別系統(RFID)的載波頻率在915MHz和2450MHz頻率范圍內;全球定位系統 (GPS)載波頻率在1227.60MHz和1575.42MHz的頻率范圍內;個人通信系統中的射頻電路工作在1.9GHz,并且可以集成于體積日益變 小的個人通信終端上;在C波段衛星廣播通信系統中包括4GHz的上行通信鏈路和6GHz的下行通信鏈路。通常這些電路的工作頻率都在1GHz以上,并且隨 著通信技術的發展,這種趨勢會繼續下去。但是,處理這種頻率很高的電路,不僅需要特別的設備和裝置,而且需要直流和低頻電路中沒有用到的理論知識和實際經驗。
四、射頻電路如何布局
1.盡可能地把高功率RF放大器和低噪音放大器隔離開來,簡單地說,就是讓高功率RF發射電路遠離低功率RF接收電路
2.確保PCB板上高功率區至少有一整塊地,最好上面沒有過孔,當然,銅箔面積越大越好。
3.電路和電源去耦同樣也極為重要。
4.RF輸出通常需要遠離RF輸入
5.敏感的模擬信號應該盡可能遠離高速數字信號和RF信號。
五、射頻電路的應用
RF(Radio Frequency)技術被廣泛應用于多種領域,如:電視、廣播、移動電話、雷達、自動識別系統等。專用詞RFID(射頻識別)即指應用射頻識別信號對目標物進行識別。RFID的應用包括:
●ETC(電子收費)
● 鐵路機車車輛識別與跟蹤
● 集裝箱識別
● 貴重物品的識別、認證及跟蹤
● 商業零售、醫療保健、后勤服務等的目標物管理
● 出入門禁管理
● 動物識別、跟蹤
● 車輛自動鎖死(防盜)
射頻頻段頻段的主要應用領域有:
衛星通信與衛星電視廣播
雙邊帶廣播系統(DBS-Direct Broadcast System)
C波段 :4/6GHz,下行4 GHz,上行6 GHz
Ku波段:12/15GHz,下行12GHz,上行15GHz
衛星間通信:36GHz
微波中繼通信
干線微波:2.1GHz,8GHz,11GHz
支線微波:6GHz,8GHz,11GHz,36GH
農村多址(一點多址):1.5GHz,2.4GHz,2.6GHz
雷達、氣象、測距、定位
雷達遠程警戒:P,L,S,C
精確制導:X,Ka
氣象:1.7 GHz,0.1375GHz
汽車防撞、自動記費:36 GHz,60GHz
防盜:9.4 GHz
全球定位:1227.60MHz和1575.42MHz
射電天文:36GHz, 94GHz, 125GHz;
計算機無線網:2.5 GHz, 5.8 GHz, 36GHz。
六、射頻電路設計的常見問題
1、數字電路模塊和模擬電路模塊之間的干擾
如果模擬電路(射頻)和數字電路單獨工作,可能各自工作良好。但是,一旦將二者放在同一塊電路板上,使用同一個電源一起工作,整個系統很可能就不穩定。這主要是因為數字信號頻繁地在地和正電源(>3 V)之間擺動,而且周期特別短,常常是納秒級的。由于較大的振幅和較短的切換時間。使得這些數字信號包含大量且獨立于切換頻率的高頻成分。在模擬部分,從無線調諧回路傳到無線設備接收部分的信號一般小于lμV。因此數字信號與射頻信號之間的差別會達到120dB。顯然,如果不能使數字信號與射頻信號很好地分離。微弱的射頻信號可能遭到破壞,這樣一來,無線設備工作性能就會惡化,甚至完全不能工作。
2、供電電源的噪聲干擾
射頻電路對于電源噪聲相當敏感,尤其是對毛刺電壓和其他高頻諧波。微控制器會在每個內部時鐘周期內短時間突然吸人大部分電流,這是由于現代微控制器都采用 CMOS工藝制造。因此。假設一個微控制器以lMHz的內部時鐘頻率運行,它將以此頻率從電源提取電流。如果不采取合適的電源去耦,必將引起電源線上的電壓毛刺。如果這些電壓毛刺到達電路RF部分的電源引腳,嚴重時可能導致工作失效。
3、不合理的地線
如果RF電路的地線處理不當,可能產生一些奇怪的現象。對于數字電路設計,即使沒有地線層,大多數數字電路功能也表現良好。而在RF頻段,即使一根很短的地線也會如電感器一樣作用。粗略地計算,每毫米長度的電感量約為l nH,433 MHz時10toni PCB線路的感抗約27Ω。如果不采用地線層,大多數地線將會較長,電路將無法具有設計的特性。
4、天線對其他模擬電路部分的輻射干擾
在PCB電路設計中,板上通常還有其他模擬電路。例如,許多電路上都有模,數轉換(ADC)或數/模轉換器(DAC)。射頻發送器的天線發出的高頻信號可能會到達ADC的模擬淙攵?。因挝何稻湉U唄范伎贍莧縑煜咭謊⒊齷蚪郵誖F信號。如果ADC輸入端的處理不合理,RF信號可能在ADC輸入的ESD二極管內自激。從而引起ADC偏差。