當(dāng)前位置: 首頁 > 工業(yè)控制產(chǎn)品 > 自動化控制 > 人工智能
發(fā)布日期:2022-10-09 點擊率:78
在深度學(xué)習(xí)的領(lǐng)域里,最重要的是數(shù)據(jù)和運算。誰的數(shù)據(jù)更多,誰的運算更快,誰就會占據(jù)優(yōu)勢。因此,在處理器的選擇上,可以用于通用基礎(chǔ)計算且運算速率更快的GPU迅速成為人工智能計算的主流芯片。可以說,在過去的幾年,尤其是2015年以來,人工智能大爆發(fā)就是由于英偉達公司的GPU得到廣泛應(yīng)用……
一、人工智能與深度學(xué)習(xí)
2016年,AlphaGo與李世石九段的圍棋對決無疑掀起了全世界對人工智能領(lǐng)域的新一輪關(guān)注。在與李世石對戰(zhàn)的5個月之前,AlphaGo因擊敗歐洲圍棋冠軍樊麾二段,圍棋等級分上升至3168分,而當(dāng)時排名世界第二的李世石是3532分。按照這個等級分?jǐn)?shù)對弈,AlphaGo每盤的勝算只有約11%,而結(jié)果是3個月之后它在與李世石對戰(zhàn)中以4比1大勝。AlphaGo的學(xué)習(xí)能力之快,讓人惶恐。
1.人工智能:讓機器像人一樣思考
自AlphaGo之后,“人工智能”成為2016年的熱詞,但早在1956年,幾個計算機科學(xué)家就在達特茅斯會議上首次提出了此概念。他們夢想著用當(dāng)時剛剛出現(xiàn)的計算機來構(gòu)造復(fù)雜的、擁有與人類智慧同樣本質(zhì)特性的機器,也就是我們今日所說的“強人工智能”。這個無所不能的機器,它有著我們所有的感知、所有的理性,甚至可以像我們一樣思考。
人們在電影里也總是看到這樣的機器:友好的,像星球大戰(zhàn)中的C-3PO;邪惡的,如終結(jié)者。強人工智能目前還只存在于電影和科幻小說中,原因不難理解,我們還沒法實現(xiàn)它們,至少目前還不行。
我們目前能實現(xiàn)的,一般被稱為“弱人工智能”。弱人工智能是能夠與人一樣,甚至比人更好地執(zhí)行特定任務(wù)的技術(shù)。例如,Pinterest上的圖像分類,或者Facebook的人臉識別。這些人工智能技術(shù)實現(xiàn)的方法就是“機器學(xué)習(xí)”。
2.機器學(xué)習(xí):使人工智能真實發(fā)生
人工智能的核心就是通過不斷地機器學(xué)習(xí),而讓自己變得更加智能。機器學(xué)習(xí)最基本的做法,是使用算法來解析數(shù)據(jù)、從中學(xué)習(xí),然后對真實世界中的事件做出決策和預(yù)測。與傳統(tǒng)的為解決特定任務(wù)、硬編碼的軟件程序不同,機器學(xué)習(xí)是用大量的數(shù)據(jù)來“訓(xùn)練”,通過各種算法從數(shù)據(jù)中學(xué)習(xí)如何完成任務(wù)。
機器學(xué)習(xí)最成功的應(yīng)用領(lǐng)域是計算機視覺,雖然也還是需要大量的手工編碼來完成工作。以識別停止標(biāo)志牌為例:人們需要手工編寫形狀檢測程序來判斷檢測對象是不是有八條邊;寫分類器來識別字母“S-T-O-P”。使用以上這些手工編寫的分類器與邊緣檢測濾波器,人們總算可以開發(fā)算法來識別標(biāo)志牌從哪里開始、到哪里結(jié)束,從而感知圖像,判斷圖像是不是一個停止標(biāo)志牌。
這個結(jié)果還算不錯,但并不是那種能讓人為之一振的成功。特別是遇到霧霾天,標(biāo)志牌變得不是那么清晰可見,又或者被樹遮擋一部分,算法就難以成功了。這就是為什么很長一段時間,計算機視覺的性能一直無法接近到人的能力。它太僵化,太容易受環(huán)境條件的干擾。
下一篇: PLC、DCS、FCS三大控
上一篇: 索爾維全系列Solef?PV